Spring Run Chinook Salmon Draft Preliminary Example Biological Goals, Objectives, and Stressors Logic Chain for the BDCP February 27th, 2012 ### **Global Goals** Removal of the Central Valley spring-run Chinook salmon ESU from the Federal List of Endangered and Threatened Wildlife (NMFS 2009). According to the NMFS draft recovery plan (2009), recovery and long-term sustainability requires: - 1) Adequate protection for replacement of losses due to natural mortality (disease and stochastic events) - 2) Sufficient genetic robustness to avoid inbreeding depression and allow for adaptation - 3) Sufficient habitat (type, amount, and quality) for long-term population maintenance, and - 4) Elimination or control of threats. # **Global Objectives** There are two components of Global Objectives that are relevant to the BDCP program. The first pertains to Recovery Plan goals based on Viable Salmonid Population (VSP) criteria, and further refined for the Central Valley in Lindley et al. (2007). The second component relates to Critical Habitat (as designated for Central Valley spring-run Chinook salmon 70 FR 52488 on September 2, 2005). #### Global VSP Objectives include: - VSP1. Increase abundance - VSP2. Increase spatial distribution - a. Secure all extant populations (all populations are important because there are so many "missing" populations in the Central Valley) - b. Recover populations in each diversity group - VSP3. Protect and increase life history and genetic diversity - VSP4. Increase productivity (population growth rate = births-deaths) Viable populations should demonstrate a combination of population growth rate and abundance that produces an acceptable probability of population persistence (NMFS Draft Recovery Plan). # Global Critical Habitat Objectives (from primary constituent elements) - CH1. Provide Freshwater spawning sites with water quantity and quality conditions and substrate supporting spawning, incubation and larval development - CH2. Provide freshwater rearing sites with: - (i) Water quantity and floodplain connectivity to form and maintain physical habitat conditions and support juvenile growth and mobility; - (ii) Water quality and forage supporting juvenile development; and - (iii) Natural cover such as shade, submerged and overhanging large wood, log jams and beaver dams, aquatic vegetation, large rocks and boulders, side channels, and undercut banks. - CH3. Provide freshwater migration corridors free of obstruction and excessive predation with water quantity and quality conditions and natural cover such as submerged and overhanging large wood, aquatic vegetation, large rocks and boulders, side channels, and undercut banks supporting juvenile and adult mobility and survival. - CH4. Provide estuarine areas free of obstruction and excessive predation with: - (i) Water quality, water quantity, and salinity conditions supporting juvenile and adult physiological transitions between fresh- and saltwater; - (ii) Natural cover such as submerged and overhanging large wood, aquatic vegetation, large rocks and boulders, side channels; and - (iii) Juvenile and adult forage, including aquatic invertebrates and fishes, supporting growth and maturation. | | Spring Run – Global Abundance Goal Logic Tree | | | | | | | | |--|--|--|---|--|---|--|--|--| | Global
Goal | Global Objectives | BDCP Goal | BDCP
Objective | Assumed
Stressor | Stressor Reduction Target | Cons.
Measures | | | | Increase spring-run Chinook salmon abundance | Achievement of 6-year geometric mean escapement levels of: 59,000 naturally produced adults in the Sacramento River and its tributaries ¹ , with no year below 30,000; and a five year annual average escapement of 30,000 naturally produced adults in the San Joaquin River and its tributaries ² , with no year below 10,000. | Improved juvenile survival (as a proxy for abundance) within the Plan Area, SF Bay, and the nearshore ocean. | Increase current survival rate of juvenile emigrants from Sac and SJ River systems through Delta, SF Bay, and into nearshore ocean ³ . | Entrainment | Reduce entrainment of spring-run by at least 50% in all water year types | -Water Ops
-Alternate
migration
routes | | | | | | | | Predation | -Decrease mortality from predation in (specify locations & months) by%Increase quantity and quality of rearing habitat (including floodplain, channel margin, and riparian habitats) throughout the Delta | -Predator
removal
-Water Ops | | | | | | | | Limited
Rearing
Habitat | Increase average size of juveniles (relative to current conditions) as they migrate through the Delta to% of their physiological maximum (corrected for temp) | -Yolo bypass
-SJR bypass
-Suisun
-Ammonia | | | | | [These numbers do not include hatchery produced fish]. ¹From AFRP doubling goals | | | North Delta
Diversion
Facilities | Maintain survival rates through the reach containing new north Delta diversions to no more than a 2% loss per screen, and no more than a 5% cumulative loss. | -Water Ops -Alternate migration routes -Predator removal | | | | | ² From SJ River
Restoration Program | | | Limited
Migration
Flows | Maintain minimum Delta inflows in key migratory months | -Water Ops | | | | | | Increase
migration/
spawning success | Eliminate
human-induced
passage delays | Migration
barriers | Eliminate known human-caused passage impediments (chemical and physical) in the Plan Area | -Fremont
weir
-SDWSC | | | | | | of adult spring-
run migrating
through the Delta. | or illegal take of spring-run adults in the Delta. | Poaching | Eliminate spring-run poaching in the Delta | -Funding for game wardens | | | ³The exact survival rate is TBD, but would be high enough to allow for positive population growth rates. 98.PK | | Spring Run – Global Spatial Distribution Goal Logic Tree | | | | | | | | |-------------------------------------|---|---|--|--|--|---------------------------------------|--|--| | Global
Goal | Global Objectives | BDCP Goal | BDCP
Objective | Assumed
Stressor | Stressor Reduction Target | Cons.
Measures | | | | Increase
spatial
distribution | Restoration of six self-
sustaining,
independent | and juvenile migration success through the Delta to and from the SJ River and Sac. River Basins (as a proxy for spatial distribution) A | Eliminate
human-induced
adult passage
delays (barriers
that necessitate
median passage
time > 36 hrs.) | Migration
barriers
–Sac. River | Eliminate known human-caused passage physical impediments (physical) within Plan Area | -Fremont
weir | | | | of spring-
run
Chinook | populations of wild
spring-run in
watersheds of the | | | Migration
barriers – SJ
River | Eliminate known human-caused passage impediments (chemical) w/i Plan Area | -SDWSC | | | | \
\
& | Sacramento R. drainage, including viable pop's in: | | | Attraction flows | Provide Delta inflows >cfs (Sac
River) and >cfs (SJ River), between
date &date | -Water
Ops | | | | | a. Northwestern CA
Region (Clear Crk
to Stony Crk);
b. Basalt & Porous | | Create one juvenile migration pathway in the | Entrainment | Maintain SJ River spring-run entrainment at project pumps to < 2% of estimated smolt production in all water year types. | -Water
Ops
-SJR flood
bypass | | | | | Lava Region (L.
Sac RBattle Crk);
c. Northern Sierra | SJ River
(Friant Dam to
Delta) in all | Limited juvenile emigration | Provide juvenile migration flows scaled to unimpaired hydrology (see Table) on lower SJ River & eliminate low DO | -Water
Ops | | | | | | Region (Antelope
Crk to
Mokelumne R.), | | years, and create a second | routes (SJ
River) | barrier between [date]&[date]. | -SDWSC | | | | | and Two self-sustaining, independent pop's in watersheds of the SJ | g,
s in
SJ | pathway on the SJ River | Limited
juvenile
emigration
routes (SJ
River) | Ensure that at least % of juvenile SJR spring-run emigrate through a non-mainstem channel route (flood bypass) in at least 30% of years. | -SJ River
flood
bypass | | | | | River drainage; e. maintenance of Core 2 pops at mod. risk of extinction | | | Limited juvenile emigration routes (Sac. River) | Ensure that at least % of juvenile Sacramento spring-run emigrate through a non-mainstem channel route (e.g. flood bypass) in at least 40% of years. | -Yolo
bypass
-Fremont
weir | | | | | Spring Run – Global Life History and Genetic Diversity Goal Logic Tree | | | | | | | | | |---|--|--|--|---------------------------------|--|---|--|--|--| | Global
Goal | Global Objectives | BDCP Goal | BDCP Objective | Assumed
Stressor | Stressor Reduction Target | Cons.
Measures | | | | | Conserve
and
restore
life-history
and | Protect and restore
the full range of adult
and juvenile life-
history types
migrating through the | Ensure that the project does not favor the survival of one life-history type | Eliminate
artificial selection
for spring-run life-
history types
resulting from | Hatchery
Effects | Adopt hatchery practices that minimize adverse changes to life-history traits (e.g., size/age at smolting, age at maturity, migration timing) of wild spring-run Chinook. | -Hatchery
reform | | | | | genetic
diversity
of spring- | Delta . | over others. | project operations (including hatcheries). | Hatchery
Effects | Alter hatchery practices to minimize adverse changes in life-history traits of hatchery spring-run Chinook. | -Hatchery
reform | | | | | run
Chinook
salmon | | | | Entrainment | Ensure that entrainment does not favor
the survival of one life-history type over
other types (e.g., early or late migrating
smolts or adults) | -Water
Ops | | | | | | | | ORINE. | Flow
Magnitude
and Timing | To an equal degree across spring-run life-history types (e.g., size/age at smolting, age at maturity, migration timing) provide flows that support rearing and migration in all times and places where they occur. | -Water
Ops
(including
upstream)
-SJ River | | | | | | | | | Rearing
Habitat | Spring-run Chinook in both Sacramento and San Joaquin Rivers will have access to inundated floodplains > 45 days in at least 1 of 3 years, | -Yolo
Bypass
-SJ River
floodplain | | | |